
SQL Connectors Documentation
Release 1.0.2

Diego Fernandez

Jan 14, 2019

Contents:

1 SQL Connectors 1
1.1 Features . 1
1.2 Installation . 1
1.3 Configurations . 2
1.4 How-To . 3
1.5 Credits . 3

2 Installation 5
2.1 Stable release . 5
2.2 From sources . 5

3 Usage 7

4 Contributing 9
4.1 Types of Contributions . 9
4.2 Get Started! . 10
4.3 Pull Request Guidelines . 11
4.4 Tips . 11
4.5 Deploying . 11

5 Credits 13
5.1 Development Lead . 13
5.2 Contributors . 13

6 History 15
6.1 1.0.0 (2019-01-14) . 15
6.2 0.1.0 (2018-03-20) . 15

7 Indices and tables 17

i

ii

CHAPTER 1

SQL Connectors

A simple wrapper for SQL connections using SQLAlchemy and Pandas read_sql to standardize SQL workflow. The
main goals of this project is to reduce boilerplate code when working with SQL based data sources and to enable
interactive exploration of data sources in Python.

• Free software: MIT license

• Documentation: https://sql-connectors.readthedocs.io.

• Repo: https://github.com/aiguofer/sql_connectors.

1.1 Features

• Standardized client for working with different SQL datasources, including a standardized format for defining
your connection configurations

• A SqlClient interface based off the SQLAlchemy Enginewith some helpful functions like Pandas’ read_sql
and functions to leverage reflection from SQLAlchemy

1.2 Installation

1.2.1 Stable release

To install SQL Connectors, run this command in your terminal:

$ pip install --process-dependency-links sql_connectors

This is the preferred method to install SQL Connectors, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

1

https://pypi.python.org/pypi/sql_connectors
https://travis-ci.org/aiguofer/sql_connectors
https://sql-connectors.readthedocs.io/en/latest/?badge=latest
https://sql-connectors.readthedocs.io
https://github.com/aiguofer/sql_connectors
https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/

SQL Connectors Documentation, Release 1.0.2

1.2.2 Dev install

The sources for SQL Connectors can be downloaded from the Github repo.

You can clone the public repository and install in development mode:

$ git clone git://github.com/aiguofer/sql_connectors
$ cd sql_connectors
$ pip install --process-dependency-links -e .[dev]

1.3 Configurations

Configurations can be stored wherever you want by implementing your own Storage. However, the default is
LocalStorage reading in configuration files from ~/.config/sql_connectors.

You can change the Storage class using the SQL_CONNECTORS_STORAGE environment variable (for example
sql_connectors.storage.LocalStorage), and you can specify a different configuration directory or URI
with SQL_CONNECTORS_PATH_OR_URI.

The example_connection.json file is provided as a template; feel free to replace this with your own connection
details and re-name the file.

The contents of the example file are:

{
"drivername": "sqlite",
"relative_paths": ["database"],
"default_env": "default",
"default": {

"database": "example_connection.db"
}

}

The fields mean the following:

drivername (string) This required field is a SQLAlchemy dialect or dialect+driver. See the
SQLAlchemy Engine documentation for more details. You may first have to install the required
python modules for your dialect+driver to work if it’s a third party plug-in.

relative_paths (list of strings) This optional field lets you specify if an option for your connection
needs to load a file relative to your config directory. For example, if you had a connection that
needed to use a cert, you could add query.sslrootcert to this list, set "query": {
"sslmode": "verify-ca", "sslrootcert": "certs/root.crt"}, and drop
the cert in $SQL_CONNECTORS_CONFIG_DIR/certs/root.crt.

default_env (string) This optional field lets you specify which environment should be used by default.
If not included, it will use default.

default_schema (string) This optional field lets you specify which schema should be used by default. If
not included, it will use None.

default_reflect (boolean) This optional field lets you specify whether it should reflect the data source by
default. If not included, it will use False.

env.username (string) This optional field specifies the username for the connection. If it’s left out or set
to null and the driver is not ‘sqlite’, the user will be prompte when they try to create the client. If the
connection doesn’t have credentials, set this to an empty string. Should not be set for ‘sqlite’.

2 Chapter 1. SQL Connectors

https://github.com/aiguofer/sql_connectors
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

SQL Connectors Documentation, Release 1.0.2

env.password (string) This optional field specifies the password for the connection. If it’s left out or set
to null and the driver is not ‘sqlite’, the user will be prompte when they try to create the client. If the
connection doesn’t have credentials, set this to an empty string. Should not be set for ‘sqlite’.

env.host (string) This optional field specifies the host for the connection. Should not be set for ‘sqlite’.

env.port (string or integer) This optional field specifies the port for the connection. Should not be set
for ‘sqlite’.

env.database (string) This optional field specifies the database name for the connection. If it’s a ‘sqlite’
connection and left empty, it will use :memory:. Otherwise, you can specify a relative path or
an absolute path; if you want the file in your config directory, you can use the relative_paths
property.

env.query (object) This optional field is a json object with options to pass onto the dialect and/or DBAPI
upon connect.

env.allowed_hosts (list of strings) This optional field is a list of strings containing hostnames where
the given credentials are accepted. If the hostname is not in the list, it will prompt the user for
credentials. This was added due to some specific usecase where we share service credentials but
they’re only allowed on our common servers.

1.4 How-To

The module will check your available connection configurations and create variables within the top level module for
each of them. It will create 2 variables for each config, connection_name and connection_name_envs;
these are both functions, the first will return a get_client function with some defaults set based on the config, and
the second will return a get_available_envs function that when called returns available environments for the
given data source. When reflection is enabled, the client will hold metadata about the available tables.

Here’s a basic usage example assuming the example config file exists:

from sql_connectors import connections
client = connections.example_connection()
client.read_sql('select 1')

Here’s a more complex example that’s pretty redundant but shows more functionality

from sql_connectors import connections

available_envs = connections.example_connection_envs()
client = connections.example_connection(env=available_envs[0], reflect=True)

client.read_sql('select 1').to_sql('example_table', client, if_exists='replace')
available_tables = client.table_names()
table1 = client.get_table(available_tables[0])
df = client.read_sql(table1.select())

1.5 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

1.4. How-To 3

https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

SQL Connectors Documentation, Release 1.0.2

4 Chapter 1. SQL Connectors

CHAPTER 2

Installation

2.1 Stable release

To install SQL Connectors, run this command in your terminal:

$ pip install --process-dependency-links sql_connectors

This is the preferred method to install SQL Connectors, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for SQL Connectors can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/aiguofer/sql_connectors

Or download the tarball:

$ curl -OL https://github.com/aiguofer/sql_connectors/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

5

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/aiguofer/sql_connectors
https://github.com/aiguofer/sql_connectors/tarball/master

SQL Connectors Documentation, Release 1.0.2

6 Chapter 2. Installation

CHAPTER 3

Usage

To use SQL Connectors in a project:

import sql_connectors

7

SQL Connectors Documentation, Release 1.0.2

8 Chapter 3. Usage

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.1 Types of Contributions

4.1.1 Report Bugs

Report bugs at https://github.com/aiguofer/sql_connectors/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

4.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

4.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

9

https://github.com/aiguofer/sql_connectors/issues

SQL Connectors Documentation, Release 1.0.2

4.1.4 Write Documentation

SQL Connectors could always use more documentation, whether as part of the official SQL Connectors docs, in
docstrings, or even on the web in blog posts, articles, and such.

4.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/aiguofer/sql_connectors/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started!

Ready to contribute? Here’s how to set up sql_connectors for local development.

1. Fork the sql_connectors repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/sql_connectors.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv sql_connectors
$ cd sql_connectors/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 sql_connectors tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

10 Chapter 4. Contributing

https://github.com/aiguofer/sql_connectors/issues

SQL Connectors Documentation, Release 1.0.2

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/aiguofer/
sql_connectors/pull_requests and make sure that the tests pass for all supported Python versions.

4.4 Tips

To run a subset of tests:

$ python -m unittest tests.test_sql_connectors

4.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

4.3. Pull Request Guidelines 11

https://travis-ci.org/aiguofer/sql_connectors/pull_requests
https://travis-ci.org/aiguofer/sql_connectors/pull_requests

SQL Connectors Documentation, Release 1.0.2

12 Chapter 4. Contributing

CHAPTER 5

Credits

5.1 Development Lead

• Diego Fernandez <aiguo.fernandez@gmail.com>

5.2 Contributors

None yet. Why not be the first?

13

mailto:aiguo.fernandez@gmail.com

SQL Connectors Documentation, Release 1.0.2

14 Chapter 5. Credits

CHAPTER 6

History

6.1 1.0.0 (2019-01-14)

• BREAKING: Connections are now stored in a namespace instead of being submodules. New usage:

from sql_connectors import connections
client = connections.example_connection()

Instead of:

from sql_connectors import example_connection
client = example_connection()

• New Storage abstract class can be extended to implement different backend

• Configuration is now handled by Traitlets. Default storage class can be specified with
SQL_CONNECTORS_STORAGE env var and the connection string or path can be specified with
SQL_CONNECTORS_PATH_OR_URI

6.2 0.1.0 (2018-03-20)

• First release on PyPI.

15

SQL Connectors Documentation, Release 1.0.2

16 Chapter 6. History

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

17

	SQL Connectors
	Features
	Installation
	Configurations
	How-To
	Credits

	Installation
	Stable release
	From sources

	Usage
	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	History
	1.0.0 (2019-01-14)
	0.1.0 (2018-03-20)

	Indices and tables

